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Abstract

We investigate sleep stage classification using heart
rate variability (HRV), comparing conventional fea-
tures—mean RR, root mean square of successive differ-
ences (RMSSD), low-frequency to high-frequency power
ratio (LF/HF), SD1 and SD2 of the Poincaré plot—with
those derived from dynamical detrended fluctuation anal-
ysis (DDFA). We trained three classifiers: logistic regres-
sion, eXtreme Gradient Boosting, and a neural network
on each feature space independently, using physician-
annotated sleep stages as ground truth, labeled as wake,
rapid eye movement (REM) sleep, and non-rapid eye move-
ment (NREM) sleep. The dataset comprised 2052 subjects
without a history of sleep apnea, aged 40 to 89. DDFA
consistently outperformed conventional HRV, improving
NREM and REM classification across all models, indicat-
ing that it provides information beyond conventional HRV
features for sleep stage classification. DDFA effectively
captures correlations between consecutive heartbeats and
are easily visualized and interpreted, allowing physiolog-
ical links to different sleep stages. This interpretability
makes DDFA features particularly valuable for explain-
able artificial intelligence, where understanding both fea-
tures and model decisions is crucial.

1. Introduction

Sleep stages, including rapid eye movement (REM) and
non-rapid eye movement (NREM; stages N1–N3), exhibit
distinct physiological characteristics and typically cycle
every 90 minutes, repeating 4–6 times per night. Accu-
rate classification of these stages is clinically important, as
many sleep disorders, such as sleep apnea and narcolepsy,
are stage-dependent [1, 2]. Polysomnography (PSG) re-
mains the gold standard for sleep assessment due to its
comprehensive physiological monitoring [3], but its high
cost and intrusive nature limit accessibility and scalabil-
ity. At the same time, there is growing consumer inter-
est in tracking sleep and recovery to optimize health, per-
formance, and wellbeing, creating a market for wearable

wellness applications and motivating the search for alter-
native, non-intrusive approaches to monitor sleep.

This increasing demand has fueled the use of physio-
logical signals, such as heart rate variability (HRV), for
sleep analysis. HRV is a well-established marker for as-
sessing cardiac health, physical fitness, and sleep, and pro-
vides a non-invasive means to capture autonomic dynamics
throughout the night. Conventional HRV (cHRV) metrics
include, for example, the root mean square of successive
RR interval (RRI) differences (RMSSD), the ratio of low-
to high-frequency power (LF/HF), SD1 and SD2 from the
Poincaré plot, and detrended fluctuation analysis (DFA).
All of these features can be derived from wearable sensors
and applied to sleep stage classification [4].

We focus on dynamical detrended fluctuation analysis
(DDFA) [5], a recent extension of conventional DFA that
enables simultaneous time- and scale-dependent examina-
tion of the scaling exponent in RRI sequences. We com-
pare its performance with cHRV metrics in sleep stage
classification. By applying identical machine learning ar-
chitectures to different feature spaces, we specifically as-
sess how the feature representation contributes to classifi-
cation performance.

2. Data and preprocessing

We analyzed 5804 overnight PSG recordings from the
first phase of the Sleep Heart Health Study (SHHS1), ob-
tained via the National Sleep Research Resource [6, 7].
RRIs were extracted from ECG signals using a delineation
algorithm [8]. Sleep stage annotations in 30 s epochs pro-
vided in SHHS1 were aligned with the extracted RRIs. A
rolling median filter (51-beat window) was applied to the
RRI series. Beats outside (0.85n < RRI < 1.15n), where
n is the local median, were removed. Subjects with over
20% of RRIs excluded were discarded from analysis. The
resulting dataset comprised RRI data from 4158 subjects.
We further excluded subjects with sleep apnea to avoid
confounding effects in sleep stage analysis. The final co-
hort comprised 2052 subjects, summarized in Table 1.

Majority-vote smoothing [9] was applied to 5min
segments to reduce fluctuations from 30 s epoch scor-
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Table 1: Demographic characteristics of the study subjects.
Age and body mass index (BMI) are presented as mean ±
standard deviation.

Variable Value
Subjects N (male/female) 2052 (684/1368)
Age (years) 60.7 ± 11.0
BMI (kg/m²) 26.9 ± 4.4

ing. Sleep stages were simplified into three macro-
states—WAKE, REM, and NREM in order to reduce inter-
rater variability, balance class distributions, and focus on
physiologically distinct states relevant to autonomic and
cardiovascular dynamics [10].

The dataset of 2052 subjects was randomly partitioned
into a training set (80%) and an independent test set (20%).
During model development, the training set was further
split into training and validation subsets (80/20) to enable
parameter optimization, while the test set remained un-
touched until final training and evaluation.

3. Theory and methods

DFA is a common nonlinear method for HRV analysis,
and here we focus on its dynamical extension, DDFA [5].
This method enables the assessment of scaling exponents
α(t, s) as functions of both time and scale, providing a de-
tailed view of temporal dynamics. It has been successfully
applied to sleep stage identification in earlier work [11].

Second-order DDFA was applied to RRIs across 38 tem-
poral scales ranging from 6 to 499 heartbeats over the
entire recording. The resulting scaling exponents α(t, s)
were segmented into 30 s epochs aligned with the sleep
stage annotations. For each epoch, α(t, s) values were
estimated across all scales, and their means and standard
deviations were computed to characterize epoch-level dy-
namics. This process yielded 76 features in total, corre-
sponding to the mean and standard deviation of α(t, s) at
each of the 38 scales.

Fig. 1 illustrates the overnight DDFA scaling exponent
for a single subject, with blue regions indicating anti-
correlations and red regions indicating positive correla-
tions between heartbeats. While general trends are evident
across sleep stages, particularly the blue regions at high
scales during NREM sleep, considerable variability exists
within each stage.

cHRV features were extracted from the same 30 s
epochs. Time-domain features included the mean RRI and
RMSSD, while frequency-domain features consisted of LF
and HF and their ratio LF/HF. In addition, we also calcu-
lated the Poincaré plot indices SD1 and SD2. These met-
rics collectively formed the cHRV feature space [4].

Time-domain and Poincaré HRV features were com-
puted directly within 30 s sleep-stage epochs. Since
frequency-domain metrics require longer data, LF/HF was
estimated from 5min windows and assigned to the cen-
tral 30 s. Similarly, DDFA features were derived from ex-
tended RR sequences to ensure reliable estimation at larger

0 1 2 3 4 5 6 7
Time (h)

101

102

Sc
al

e

0

20

40

60

80

HR
 (B

PM
)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
(t, s)

Wake

REM

NREM

Figure 1: Overnight DDFA landscape for a single subject. The black curve depicts heart rate, and the pink line shows
majority-vote smoothed sleep stages. The plot presents time on the x-axis and scale on the y-axis, with colors representing
DDFA scaling exponents α(t, s). Blue regions in higher scales indicating anti-correlations align closely with NREM sleep
periods.
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scales. This approach enhances feature validity but may
smooth rapid stage transitions, as both LF/HF and large-
scale DDFA reflect information across multiple epochs.

Both DDFA and cHRV metrics were used indepen-
dently as input features for three machine learning clas-
sifiers: multinomial logistic regression (LogReg, scikit-
learn [12]), eXtreme Gradient Boosting (XGBoost [13]),
and a neural network (NN, PyTorch [14]). Sleep stages
were treated as class labels, and the classifiers’ perfor-
mance was compared. Class imbalance was handled by
applying training-set weights.

The logistic regression baseline was implemented as a
multinomial classifier using a softmax output layer. In-
put features were standardized to zero mean and unit vari-
ance. The model was trained with the saga solver, using
a maximum of 500 iterations and an inverse regularization
strength C = 1.0.

The XGBoost classifier was tuned via 3-fold cross-
validation using grid search over tree depth, learning rate,
number of estimators, and sampling rates. Optimal hy-
perparameters differed between feature spaces: for DDFA,
800 estimators, maximum depth 8, learning rate 0.1, sub-
sample 0.8; for cHRV, 800 estimators, maximum depth 4,
learning rate 0.05, subsample 0.8. Both models used all
available features when building each tree.

The NN consisted of two hidden fully-connected layers
with 32 neurons, ReLU activation and a dropout of p =
0.1. The optimizer was set to Adam [15] with an initial
learning rate of 0.001, along with an exponential learning
rate decay with γ = 0.9.

4. Results

Figure 2 presents the confusion matrices for all three
classifiers: logistic regression, XGBoost, and the neural
network, using both feature sets, cHRV and DDFA. For
logistic regression, wake detection performance is similar,
0.53 for cHRV and 0.54 for DDFA. DDFA improves REM
detection from 0.33 to 0.55. Likewise, DDFA NREM de-
tection is improved from 0.48 to 0.68 compared to cHRV
as seen in Figs. 2(a,b).

Figures 2(c,d) show the performance of the XGBoost
algorithm. DDFA improved wake detection from 0.40 to
0.52 and REM detection from 0.49 to 0.64. NREM classi-
fication also improved, increasing from 0.51 to 0.73 com-
pared to cHRV.

For the neural network, cHRV performed better in wake
detection, achieving a score of 0.59 compared to 0.48
with DDFA. In contrast, DDFA improved REM detection
markedly from 0.29 to 0.66, and REM classification in-
creased from 0.49 to 0.73 as illustrated in Figs. 2(e,f).

Different classifier architectures had minimal impact on
overall performance, with balanced accuracy varying by
only two percentage points for cHRV and four percentage

points for DDFA, although some models performed bet-
ter on specific sleep stages. This suggests that classifica-
tion performance is primarily limited by the feature space
rather than the choice of architecture.

Similar trends were observed in preliminary experi-
ments with convolutional neural network architectures,
where increasing model size did not substantially improve
performance. Furthermore, additional dataset augmenta-
tion, excluding approximately 400 subjects with a history
of cardiovascular diseases, did not affect model perfor-
mance.
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Figure 2: Conventional HRV (cHRV) parameters (left) and
DDFA feature space (right) classification results for (a,b)
logistic regression, (c,d) XGBoost, and (e,f) neural net-
work.

5. Conclusion

Across all tested classifiers and feature sets, DDFA con-
sistently outperformed cHRV, indicating that the feature
representation, rather than model complexity, was the key
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determinant of classification performance. This suggests
that DDFA provides a more informative and discrimina-
tive characterization of heartbeat dynamics for sleep stage
classification.

By explicitly capturing correlations between consecu-
tive heartbeats, DDFA produces features that are both ex-
plainable and intuitive. These features can be easily visual-
ized, which makes them particularly well suited for use in
interpretable machine learning and explainable AI frame-
works.

Because HRV can be measured non-invasively using
photoplethysmography [11], DDFA offers a practical al-
ternative to PSG. Its adaptability to wearable devices such
as smart rings, watches, and belts highlights its potential
for real-world sleep monitoring and wellness applications.

The present results highlight the importance of the se-
lected feature space in determining classification perfor-
mance. In future work, the feature space could be re-
fined by utilizing the raw values of α(t, s) rather than sum-
marizing them with means and standard deviations. The
present study also motivates further research on evaluating
DDFA performance in sleep disorders, particularly across
different levels of sleep apnea severity. Such analyses will
help determine how apnea burden influences classification
accuracy and the broader clinical applicability of DDFA-
based approaches.
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